Package: boostmtree 1.5.1

boostmtree: Boosted Multivariate Trees for Longitudinal Data

Implements Friedman's gradient descent boosting algorithm for modeling longitudinal response using multivariate tree base learners. Longitudinal response could be continuous, binary, nominal or ordinal. A time-covariate interaction effect is modeled using penalized B-splines (P-splines) with estimated adaptive smoothing parameter. Although the package is design for longitudinal data, it can handle cross-sectional data as well. Implementation details are provided in Pande et al. (2017), Mach Learn <doi:10.1007/s10994-016-5597-1>.

Authors:Hemant Ishwaran <[email protected]>, Amol Pande <[email protected]>

boostmtree_1.5.1.tar.gz
boostmtree_1.5.1.zip(r-4.5)boostmtree_1.5.1.zip(r-4.4)boostmtree_1.5.1.zip(r-4.3)
boostmtree_1.5.1.tgz(r-4.4-any)boostmtree_1.5.1.tgz(r-4.3-any)
boostmtree_1.5.1.tar.gz(r-4.5-noble)boostmtree_1.5.1.tar.gz(r-4.4-noble)
boostmtree_1.5.1.tgz(r-4.4-emscripten)boostmtree_1.5.1.tgz(r-4.3-emscripten)
boostmtree.pdf |boostmtree.html
boostmtree/json (API)
NEWS

# Install 'boostmtree' in R:
install.packages('boostmtree', repos = c('https://kogalur.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 9 scripts 368 downloads 10 exports 69 dependencies

Last updated 3 years agofrom:b402ee8976. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winOKNov 19 2024
R-4.5-linuxOKNov 19 2024
R-4.4-winOKNov 19 2024
R-4.4-macOKNov 19 2024
R-4.3-winOKNov 19 2024
R-4.3-macOKNov 19 2024

Exports:boostmtreeboostmtree.newsmarginalPlotpartialPlotplot.boostmtreepredict.boostmtreeprint.boostmtreesimLongvimp.boostmtreevimpPlot

Dependencies:base64encbitbit64bslibcachemclicliprcolorspacecpp11crayondata.treeDiagrammeRdigestdplyrevaluatefansifarverfastmapfontawesomefsgenericsgluehighrhmshtmltoolshtmlwidgetsigraphjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMatrixmemoisemimemunsellnlmepillarpkgconfigprettyunitsprogresspurrrR6randomForestSRCrappdirsRColorBrewerreadrrlangrmarkdownrstudioapisassscalesstringistringrtibbletidyrtidyselecttinytextzdbutf8vctrsviridisLitevisNetworkvroomwithrxfunyaml